DICCIDI INIE	CENACCTED	NAME OF THE TEACHING FACILITY
DISCIPLINE	SEMESTER	NAME OF THE TEACHING FACULTY
ELECTRICAL	5 TH	Niranjan Nayak (Lect. in I & C)
SUBJECT	NO. OF	SEMESTER FROM DATE
DIGITAL ELECTRONICS &	DAYS/WEEK CLASS	01.09.2020 to 19.03.2021
MICROPROCESSOR	ALLOTTED - 75	No. of week excluding holiday - 17
WEEK	CLASS DAY	THEORY TOPICS
	01	BASICS OF DIGITAL ELECTRONICS
		Binary, Octal, Hexadecimal number systems and compare with
		Decimal system.
	02	Binary addition, subtraction, Multiplication and Division.
	03	1's complement and 2's complement numbers for a binary
1 ST		number.
	04	Subtraction of binary numbers in 2's complement method.
	05	Use of weighted and Un-weighted codes & write Binary
		equivalent number for a number in 8421, Excess-3 and Gray
		Code and vice-versa.
	06	Importance of parity Bit.
2 ND	07	Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with
		truth table.
	08	Realize AND, OR, NOT operations using NAND gates.
	09	Realize AND, OR, NOT operations using NOR gates.
	10	Different postulates and De-Morgan's theorems in Boolean
	10	algebra.
	11	Use Of Boolean Algebra For Simplification Of Logic Expression.
	12	Karnaugh Map For 2 &3Variable
3 RD	13	Karnaugh Map For 4 Variable.
	14	Simplification Of SOP And POS Logic Expression
	17	Using K-Map.
	15	Revision of chapter 1.
	16	Give the concept of combinational logic circuits.
	17	Half adder circuit and verify its functionality using truth table.
4 TH	18	Realize a Half-adder using NAND gates only and NOR gates
·		only.
	19	Full adder circuit and explain its operation with truth table.
	20	Realize full-adder using two Half-adders and an OR – gate and
	20	write truth table.
	21	Full subtractor circuit and explain its operation with truth
		table.
5 [™]	22	Operation of 4 X 1 Multiplexers.
	23	1 X 4 demultiplexer.
	24	Working of Binary-Decimal Encoder
	25	3 X 8 Decoder
	26	Working of Two bit magnitude comparator.
	27	Revision of chapter 2.
6 [™]	28	Revision of chapter 2.
	29	Give the idea of Sequential logic circuits
	30	State the necessity of clock and give the concept of level
	30	clocking and edge triggering.
	31	Clocked SR flip flop with pre-set and clear inputs.
	32	Construct level clocked JK flip flop using S-R flip-flop and
7 TH	32	explain with truth table.
,	33	Concept of race around condition and study of master slave JK
		flip flop.
		Tilly Hop.

	34	Give the truth tables of edge triggered D and T flip flops and
		draw their symbols.
	35	Applications of flip flops.
	36	Define modulus of a counter.
T.,	37	4-bit asynchronous counter and its timing diagram.
8 TH	38	Asynchronous decade counter.
	39	4-bit synchronous counter.
	40	Distinguish between synchronous and asynchronous counters
	41	State the need for a Register and list the four types of registers.
	42	Working of SISO, SIPO, PISO, PIPO Register with truth table
9 [™]		using flip flop
	43	Revision of chapter 3.
	44	Revision of chapter 3.
	45	Introduction to Microprocessors, Microcomputers.
	46	Architecture of Intel 8085A Microprocessor and description of
		each block.
10 TH	47	Pin diagram and description.
_	48	Stack, Stack pointer & stack top.
_	49	Interrupts.
	50	Opcode & Operand.
	51	Differentiate between one byte, two byte & three byte
	5-	instruction with example.
11 TH	52	Instruction set of 8085 example.
	53	Instruction set of 8085 example.
_	54	Instruction set of 8085 example.
-	55	Addressing mode.
	56	Fetch Cycle, Machine Cycle, Instruction Cycle, T-State
	57	Timing Diagram for memory read, memory write, I/O read, I/O
12 [™]	37	write
-	58	Timing Diagram for memory read, memory write, I/O read, I/O
	30	write
	59	Timing Diagram for 8085 instruction.
-	60	
	61	Counter and time delay.
_		Simple assembly language programming of 8085.
13 TH	62	Revision of chapter 4.
13	63	Revision of chapter 4.
	64	Basic Interfacing Concepts.
	65	Memory mapping & I/O mapping.
	66	Functional block diagram and description of each block of
		Programmable peripheral interface Intel 8255
14 TH	67	Application using 8255: Seven segment LED display.
	68	Square wave generator.
	69	Traffic light Controller.
	70	Revision of chapter 5.
	71	Revision of chapter 1.
	72	Revision of chapter 2.
15 [™]	73	Revision of chapter 3.
	74	Revision of chapter 4.
	75	Revision of chapter 5.
	76	Previous year question & Probable question discussion
	77	
16 th	78	

	80	
	81	Previous year question & Probable question discussion
	82	
17 th	83	
	84	
	85	